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Abstract—The adoption of portable wireless devices is rapidly
rising. The demand for efficient communication protocols
amongst these devices is pressing. In this paper, we present a
content-based publish-subscribe system, called B-SUB (Bloom-
filter-based pub-SUB system), for the networks formed by
human-carried wireless devices, which are called human net-
works (HUNETs). A novel data structure, called Temporal
Counting Bloom Filter (TCBF), is proposed to perform content-
based networking tasks. The TCBF’s novelty is that it is able
to handle temporal operations, which are not supported in
the classic Bloom filter (BF) and are crucial to the success
of forwarding messages in HUNETs. B-SUB uses TCBFs to
encode users’ interests and embed routing information. Using
the TCBF, B-SUB can propagate interests by transmitting at
most two TCBFs of dozens of bytes, which makes B-SUB space-
efficient. B-SUB makes forwarding decisions through querying
the TCBFs, which is simple and fast. These designs make B-SUB
pretty suitable for resource-constrained HUNETs. However, the
TCBF has false positives, which will potentially cause useless
messages to be injected into the network. The issue that arises
here is how to handle its false positives in queries, and at the
same time maintain its spacial efficiency as well. So, we analyze
several methods for controlling the TCBF’s false positive rate.
B-SUB’s viability and usefulness are verified through extensive
simulation studies using real-world human contact traces.

Index Terms—Publish-subscribe, Bloom filter, delay tolerant
networks, human networks, social network analysis.

I. INTRODUCTION

The fast paced development of portable wireless devices and
wireless communication technologies has enabled ubiquitous
networking capability for individuals. Currently, such devices
are connected through wireless infrastructures. Recently, the
research of delay tolerant networks (DTNs) has provided a new
architecture for organizing intermittently-connected wireless
devices without the aid of a pre-existent infrastructure. There-
fore, we envision a new type of highly versatile and dynamic
networks composed of human-carried wireless devices, which
are called human networks (HUNETs). Fig. 1 shows a HUNET
composed of 4 users.

The efficient communication protocols for HUNETs are
of paramount importance to its success. However, there are
several issues associated with the design of the communication
protocols in HUNETs. First, the applications in HUNETs
require content-based networking services. Content-based net-
working [5] is a novel style of communication that associates
source and destination pairs based on actual content and inter-
ests, rather than letting source nodes specify the destination.

Alice:Thanksgiving

Bob:Phillies

Carla:New Moon

Daniel:Michael JacksonFriends

Classmates

Colleges

Families

None

None

Fig. 1. An example of HUNETs. Each person is equipped with a mobile
device. Their contact patterns are governed by their relationships. Each
person has his/her own interests, which is represented as a name:interest
pair. Messages are transported between users via (multi-hop) store-carry-
forwarding.

Content-based networking allows ad hoc and autonomous
access to network content.

The rise of social networking sites, like Twitter [18],
beacons a new trend in network applications and services.
Due to the direct correspondence between such applications
and people’s lives, these applications are able to infiltrate
into every detail of people’s lives. Due to its portability,
wireless devices are becoming a desirable platform for such
applications. For example, Twitter [18] is now widely used on
wireless devices. We believe that, in the near future, social
networking applications based on HUNETs will be prevalent.
In such applications, people are interested in various topics,
and the messages are forwarded according to their contents
and users’ interests. Therefore, it is required that the proto-
cols of HUNETs should support content-based networking.
An example is Bluejacking [2], where bluetooth users send
messages when they are in the same place. The communication
in this scenario can be made more efficient if content-based
networking is used.

Second, the protocols used in HUNETs must be simple and
efficient. The devices in HUNETs are powered by batteries,
which limits their abilities to perform computational and com-
munication tasks. So, they cannot afford complex protocols
and high overhead. The memory capacity of the nodes in
HUNETs is also limited, so the protocols have to be space-
efficient.

Finally, HUNETs are different from general DTNs, thus
require non-conventional protocol designs. Although HUNETs
can be modeled as DTNs, they are different from general
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DTNs in that their network dynamisms directly represent
people’s activity in a social group. As as result, the contact
patterns of HUNETs are different from that of the general
DTNs. Thus, we must consider the question of how to ef-
fectively exploit the benefits of the social contact patterns in
designing protocols for HUNETs.

Existing DTN routing protocols are not well suited in
HUNETs because: 1) they are based on the traditional IP-
networking paradigm instead of content-based networking; 2)
although many existing protocols [24] utilize social structures
in DTNs, which is suitable in HUNETs, these protocols require
complex off-line processing to obtain the required information
for routing.

In this paper, we present a content-based publish-subscribe
system called, B-SUB, which stands for “Bloom filter-based
pub-SUB”. In B-SUB, messages are identified by strings
that summarize their contents, which are called keys. Users’
interests are also represented as keys. Publish-subscribe (pub-
sub for short) paradigm [14] is used in B-SUB. The pub-sub
paradigm frees the users from tedious addressing and routing
tasks. In a pub-sub system, message producers and consumers
are agnostic of each other. Messages are forwarded solely by
brokers, which perform content matching for the users.

B-SUB logically has two components: broker allocation and
pub-sub forwarding. Our broker allocation scheme is based on
our previous work [30] on socially-aware pub-sub routing. In
B-SUB’s broker allocation scheme, a swarm of socially-active
nodes are selected to be brokers, based on the social contact
patterns of the nodes. Normal users do not participate in
interests propagation and message forwarding, which reduces
the overall overhead in the system.

We use Bloom filters (BF) to encode users’ interests. The
BF is a space-efficient data structure for representing sets,
which supports probabilistic membership querying. The BF
maps a key, through multiple hash functions, into a bit-vector
of a few bits being set. The locations of the set bits are
determined by the hash functions. A query of a key to a BF
checks if all the hashed bits of the key are set, which indicates
if the key is contained in the BF. Using BFs to represent
users’ interests consumes far less memory than traditional
methods [5]. Additonally, content matching through querying
to BFs is also fast and efficient.

Specifically, we propose an extension to the BF, which is
called Temporal Counting Bloom Filter (TCBF). The TCBF is
able to handle temporally related operations using a concept
called decaying, which is crucial to embed routing information
in the TCBF. B-SUB uses TCBFs to encode users’ interests
and embed information needed for brokers to make forwarding
decisions. So, in B-SUB, the interests propagation is merely
the exchanges of nodes’ TCBFs; and the content matching
becomes a query to TCBFs. These designs significantly reduce
B-SUB’s computational complexity and communication over-
head, which is particularly important for resource-constrained
HUNETs.

An issue that appears in using the TCBF is how to control
its false positives. False positives occur because a key’s hashed

bits are accidentally set by other keys that have already been
put into the TCBF. Because of false positives, B-SUB may
falsely inject useless messages into the network. We analyze,
in theory, several parameters that are related to the false pos-
itive probability and their impacts on B-SUB’s performance.
The analysis is verified through extensive simulation studies.

Our contributions in this paper are as follows:

• We design B-SUB, a practical content-based pub-sub sys-
tem for HUNETs featuring low complexity and overhead.
B-SUB’s broker allocation scheme can exploit the social
structures in HUNETs. The pub-sub forwarding in B-
SUB relies on a novel data structure called TCBF.

• We propose a method to perform content-based network-
ing using the TCBF. The TCBF is an extension to the
classic BF, which supports temporal operations that are
not possible in the classic BF. Using TCBFs reduces the
storage for representing content, and the complexity in
content matching. Besides, the TCBF is able to embed
routing information, which enables efficient pub-sub for-
warding. We analyze the relationships between the B-
SUB’s parameters and the false positive rate of the TCBF.

• We conduct extensive simulation studies using real-world
human contact traces. The results verify our analysis,
and demonstrate the usefulness and applicability of the
BF/TCBF for practical content-based pub-sub communi-
cations in HUNETs.

The rest of this paper is organized as follows: Section II
introduces relevant previous work. A preliminary of the BF
is given in Section III. The TCBF is defined in Section IV.
The design and analysis of B-SUB are presented in Section V
and VI. Simulation evaluations are presented in Section VII.
The conclusion is given in Section VIII.

II. RELATED WORK

A. HUNET/DTN routing

General DTN routing has been an active topic in the past
few years. DTNRG [7] framed the concept of the DTN, and
inaugurated the research on DTN routing [19]. Recently, the
routing of HUNETs has drawn much attention. In our previous
work [24], we proposed an optimal forwarding rule based on
the optimal stopping theory and the long-term relationships
between users. Some recent studies [9], [12], [28] using real-
world mobility/contact traces reveal that DTNs show certain
social network properties. For example, two important metrics,
familiarity and centrality, are measured based on nodes’ direct
or indirect observed contacts, and used to guide the forward-
ing in [12]. However, community/social-based schemes, such
as [10], [17], [23], [29], need complex on-/off-line processing,
and may not perform well in HUNETs because the networks
are so dynamic, resulting in community structures becoming
highly versatile and difficult to capture. Several routing pro-
tocols explicitly considered the social mobility and metrics to
facilitate efficient forwarding [8], [16]. However, all of these
protocols leave content-based networking untouched, which
limits their use in HUNETs.
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Fig. 2. Examples of the classic BF/CBF, their operations, and their false-
positives. We use 5-bit vectors and 2 hash functions. A query for k2 returns
true since its bits are set by {k0, k1}, which is a false-positive.

B. Content-based pub-sub system

Pub-sub is a powerful paradigm in solving communication
problems [14]. The use of pub-sub systems in wireless net-
works has recently attracted interests [11], [25]. However, they
do not consider unique properties of HUNETs.

Content-based networking has recently been used in op-
portunistic data diffusion [6]. Content-based addressing and
routing can be implemented in many different ways [5]. In this
paper, we use keys (raw strings) to represent content, which
is popular in social networking applications. Our work also
draws inspiration from several recent developments of pub-
sub systems for DTNs [27].

C. Network applications of the Bloom filter

The Bloom filter (BF) [3] enables a trade-off between space
complexity and query accuracy, which is proven to be useful in
many network applications [4]. The use of the bloom-filter in
pub-sub systems can be found in various literatures [20], [21].
In [20], the BF is used to encode efficient interest predicates.
In [21], the BF is used to encode addresses. On the contrary,
we use the BF to represent interests in B-SUB. Our method is
much simpler than that of [20]. To the best of our knowledge,
this paper is the only work that uses the BF in the pub-sub
systems in DTNs/HUNETs.

III. PRELIMINARY OF THE BLOOM FILTER

The BF is a randomized data structure for representing sets,
which supports probabilistic membership querying. A BF for a
single key is a m-bit vector with k bits being set. The locations
of the set bits are determined by k hash functions, each of
which independently hash the key to an integer in [0,m− 1].
A BF for a set of keys is obtained by sequentially inserting
keys into the filter. To merge multiple BFs, we do a bit-wise
OR on them.

The basic BF does not support deletions since we are unable
to trace the associated keys of set bits. The Counting Bloom
Filter (CBF) [22] is proposed to provide deletion. In a CBF,
each bit is associated with a counter, which represent the
number of keys that are associated with it. To delete a key
from a CBF, we decrement the counters of the key’s hashed
bits. A bit will be reset once its counter reaches 0.

For a single key, the query to check if it is in a filter is
performed by checking if all of its associated bits are set in

1 1 {k0}

{k1}

10 10

1 1
10 10

1 1 1
20 10

{k0, k1}
10

1 1 {k0}

{k1}

10 10

1 1
10 10

1 1 1
10 10

{k0, k1}
10

M

Fig. 3. Examples of the TCBF’s A-&M-merge operations. The counters’
initial value is 10. We use 5-bit vectors and 2 hash functions. Note that the
counters’ values of the resultant TCBFs in A-&M-merge are different.

the filter. A BF guarantees that a query for a key that is actually
in the set, returns true. But, the BF has false positives, which
means that queries for keys that are not in the set can also
return true.

We first look at the expression of the false positive proba-
bility for a BF of m bits, k hash functions, and n elements.
It equals the probability for a message that is not contained
in the filter, and whose k hashed bits are set. The probability
that a bit is not set by these n keys in the filter is (1− 1

m )nk.
Since the locations of the k bits of a key are independent, the
probability that these k bits are accidentally set by the n keys
actually contained in the filter is:

f = (1 − (1 − 1
m

)nk)k ≈ (1 − e
−nk

m )k (1)

The approximation is derived because m, the length of the
bit-vector, is quite large. Since this probability is independent
of the keys in queries, it is therefore termed the false positive
rate (FPR). It is obvious that the FPR increases with the
number of stored elements. Another concept, called Fill ratio
(FR), is used to measure the number of elements in a BF.
It is the ratio of the number of set bits to the length of the
bit-vector. For the above settings, the number of set bits is:

α = m

(
1 − (1 − 1

m
)nk

)
≈ m

(
1 − e−

kn
m

)
(2)

The FR, and its approximation, are obtained as follows:

FR =
α

m
=

m
(
1 − (1 − 1

m )nk
)

m
≈ 1 − e−

kn
m (3)

IV. TEMPORAL COUNTING BLOOM FILTER

A. Definition and operations

The Temporal Counting Bloom Filter (TCBF) is an exten-
sion to the BF/CBF. Like a CBF, a TCBF associates each
bit that has been set with a counter, as depicted in Fig. 3.
But, these counters are not for representing the number of
associated keys. Their uses are described below. For the
convenice of discussion, we use the three definitions: BF, CBF,
and/or TCBF, when appropriate.

The insertion and merge are different for the TCBF. Each
time a key is inserted into a TCBF, the counters associated
with the key’s hashed bits will be set to an initial value I. If
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Fig. 4. The concept of the TCBF’s decaying. We use 5-bit vectors and 2
hash functions. The DF is 1/unit time. We can see that the counters get
decremented with time. The only element left after time 19 is k0.

the counter has already been set, we do not change its value.
In other words, the results of insertions are always a TCBF
with identical counters of a value of I.

To merge two TCBFs, we create a new bit-vector by OR the
bit-vectors of the two original filters. Two types of operations
apply afterwards. First, the values of the new filter’s counters
are set as the maximum value of the counters of the two
original filters. We call this M-merge, which is short for
Maximum-merge. The other one is called A-merge, which
stands for Additive-merge, where the counters’ values are the
sum of the values of the two original filters. These two types
of operations are depicted in Fig. 3. The intention of these two
different operations will be clear after we present the design
of B-SUB in Section V. We can only insert a key into a filter
that has never been merged before. In order to insert multiple
keys into a merged filter, we first insert the keys into an empty
TCBF, then merge the two TCBFs using A/M-merge.

The TCBF does not support direct deletion of elements. It
only supports temporal deletion. That is, a filter constantly
decrements the counters’ values of all its set bits, which is
called decaying. The rate that counters are decremented is
called decaying factor (DF). If a key is not inserted into
the filter frequently enough, it will be removed from the
filter. The DF is a tunable parameter, directly influencing the
performance of message forwarding. The relation between
the DF and the content-based forwarding is discussed in
Section VI. The concept of the TCBF’s decaying is depicted
in Fig. 4, where several keys are put into the filter at different
times. The final structure of the filter represents the frequency
of the key being inserted into the filter. We see that after 19
units of time, the only key left in the filter is k0.

The query that checks if a key is in a TCBF is called
existential query. The TCBF bears the same FPR as the classic
BF, for existential queries. A difference is that the TCBF’s FPR
tends to decrease with the time because elements get removed
after a certain amount of time. Another type of query for the
TCBF is called preferential query. For a key k and two filters
Fi and Fj , we get the counters of k’s associated bits in Fi

and Fj , which is two sets denoted Ci and Cj . Then, we get
the minimum value in Ci and Cj , which is denoted ci and cj .
We define the preference of Fj to Fi against k, PREFi,j(k),

Broker

Push Pull

Producer Consumer

(a) Traditional networks

Brokers

Push

Pull

Producer

Consumer

(b) HUNETs/DTNs

Fig. 5. The concepts of the pub-sub system in traditional networks and
HUNETs/DTNs. The “central broker” abstraction is not valid, or too expensive
to maintain, in HUNETs/DTNs.

as the following equation:

PREFi,j{k} =
{ cj−ci

ci
if ci �= 0

cj if ci = 0

Note that the preference is cj when ci equals 0.

B. The advantages of the TCBF

TCBFs are used to represent interests in B-SUB. Basically,
TCBFs map, through hashing hi (1 ≤ i ≤ k), each interest
into a bit-vector with k bits being set using k hash functions.
First, using TCBF reduces storage for representing interests.
The analysis in Section VII demonstrates that the TCBF uses
half of the space used by the raw strings in representing
interests. It also reduces bandwidth requirements in interests
propagation. When two interests I0 and I1 of a user cannot be
forwarded at the same time due to the bandwidth restriction in
the contact, only one of them gets the opportunity to be served.
If we can compress both I0 and I1 to fit the bandwidth, both
interests might eventually be served. The content matching
using TCBF is also more efficient than the string matching
method [1].

Using the TCBF’s decaying, we are able to more accu-
rately measure the entering/exiting of a particular interest
through addition/subtraction of counters. The challenge is to
set appropriate parameters so that the gain (by compressing
more interests) outweighs the loss of effort in handling false
positives. In-depth study is needed on various trade-offs in
selecting parameters, such as the number of interests that can
be stored, and the length of the bit-vector.

V. THE DESIGN OF B-SUB

We present the design of B-SUB in this section. We show
that B-SUB is simple and easy to implement due to its
extensive use of the TCBF.

A. Overview

We now describe some concepts used in B-SUB. The
concept of pub-sub in a HUNET/DTN is depicted in Fig. 5.
Fig. 5(a) shows the traditional pub-sub system, where a central
broker exists, connecting message producers and consumers.
Fig. 5(b) depicts the pub-sub systems in HUNETs/DTNs. We
can logically treat a swarm of brokers as a central broker.

The content of a message is identified by a single key,
which is a string that indicates the content of the message.
It is desirable to use multiple keys to describe a message.
However, we limit our scope in this paper for simplicity and
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ease of representation. Also, it is straightforward to extend the
analysis to multi-key descriptions’ cases. Users’ interests are
also represented by keys, and are stored in TCBFs. TCBFs are
then used as probabilistic hints for the forwarding of messages.

Our system logically contains two components: broker
allocation and pub-sub forwarding. The pub-sub forwarding
component can be further separated into two parts: interests
propagation and message forwarding. A two-tier structure is
formed by B-SUB, where only brokers are responsible for
collecting subscriptions and forwarding messages. A fact of
this scheme is that it puts unbalanced burden on brokers.
However, this is inevitable since it is beneficial to let more
active nodes perform forwarding in the network, which has
already been identified by past researches [15], [16], [17], [29].
In reality, it is applicable in practice too. When considering the
social networking applications, it is natural that there are some
altruistic users, meaning that they are willing to contribute
their resources without any incentives. Besides, some users
may be willing to contribute their resources in order to gain
more popularity.

The sizes of the messages in B-SUB are small, which are in
order of hundreds of bytes. This assumption is true in social
networking applications. For example, Twitter [18], a popular
micro-blogging application, requires a maximum size of 140
bytes for each post. If a message is wrongly injected into the
network, the wasted bandwidth is acceptable. This is why the
BF actually pays off, despite its false positives.

The storage of the TCBF is space-efficient, and its opera-
tions are of low complexity; as depicted in Section IV. B-SUB
uses TCBFs for almost all of its functionalities, it therefore
requires less memory and low computational power.

B. Broker allocation

In our previous work [30], we have designed a decentral-
ized broker allocation algorithm for HUNETs. The allocation
method considers social characteristics, and features low com-
plexity and overhead.

In B-SUB, we extend the previous scheme. B-SUB’s broker
allocation method is similar to an election. Basically, each user
(producer or consumer) has three thresholds: a lower bound
low, a upper bound up, and a time window Tw. For each user,
if the number of brokers it meets in Tw drops below low, it
will designate the next nodes to be a broker. On the contrary,
if the number exceeds up, it tries to designate the next broker
to be a normal node. Brokers themselves do not perform these
operations.

In order to select the nodes that have a higher probability
to reach other nodes in the network, a node forces the nodes
that are less “popular” to be normal users. That is, when a
user wants to designate a broker to become a user because the
number of brokers it meets in Tw exceeds up, it compares the
broker’s degree to other brokers’ degrees. A node’s degree is
the number of different nodes that it meets in Tw. The user
designates the broker to be a user if the broker’s degree is
below the average value, otherwise it does nothing. In this
way, less popular nodes are more likely to be removed from

the brokers set. The resultant brokers are more efficient in
forwarding.

C. Interests propagation

We use TCBFs to compress users’ interests. A message
consumer stores its own interests in a TCBF, which is called
the genuine filter. A broker stores a TCBF for propagating
other users’ interests, which is called the relay filter. TCBFs
serve as “compressed” matching hints for content delivery,
which are not precise due to the TCBF’s false positives. This
occurs when scoped forwarding identifies a marching, and the
content needed to be delivered is sent back to the consumers
in multiple hops. A TCBF containing multiple interests, is
stored along the forwarding path, which is formed by brokers.
The reverse of the path can be found with the guidance of
the stored bloom filters in the brokers. Again, false positives
may occur. Thus, a delivery tree, instead of a path, will be
generated. Nonetheless, it is guaranteed that the original path
to the subscriber is embedded in the tree.

A node, or a mobile device carried by a person, can
simultaneously be a producer, consumer, and broker. When
two nodes meet, they first exchange identity information.
Then, different operations are performed depending on the
identities of the two nodes. When a consumer meets a broker,
it forwards its genuine filter to the broker. The broker then
merges this filter into its relay filter using A-merge. Next time,
when the consumer meets the same broker, it can increase
the counters’ values that associated with its interests. In this
way, a consumer actually reinforces its interests upon brokers.
The more frequently a broker meets a consumer, the higher
its counter’s value of the consumer’s interests, and the higher
the probability that the broker is selected as the forwarder
for the consumer because the broker can travel for a longer
time carrying the consumer’s interests. In other words, the
decaying and reinforcement identify closely related broker-
consumer pairs.

When two brokers meet, say N0 and N1, they first exchange
their relay filters. N0 or N1 then combines its own relay filter
and that of the other broker using M-merge. The resultant filter
will replace the old one.The intention for performing a M-
merge, instead of A-merge, in interests propagation between
brokers is to prevent bogus counters. Fig. 6 illustrates how
bogus counters are generated using A-merge. Two brokers, B
and C, meet frequently, but B only meets with A once-in-a-
while. If brokers use A-merge in combining filters from other
brokers, the counters of the same key will get added in a loop.
Our goal is to remove the interests from users a broker meets
infrequently, whereas the results here are contrary to this goal.
As a result, B and C will be selected as the forwarders of the
messages that A is interested in, by D and E. However, B
and C are actually not desirable candidates because they are
not closely realted to A.

D. Message forwarding

The decaying of the TCBF removes, from the brokers’
relay filters, the interests from the consumers that they meet
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Fig. 6. Bogus counters are generated in A-merge due to the frequent contacts
between brokers. Node B only meets A once. B and C obtain bogus counters
from each other using A-merge because they meet frequently. Even after 10
units of time, B and C do not remove A’s interest. They are selected by D
and E as the forwarders for the messages that A is interested in. however, B
or C are unable to deliver those messages.

infrequently. The preferential query is used by brokers to select
forwarders. All the data needed in forwarding messages is
merely a TCBF. The operations performed are only hashing
and table lookup. B-SUB is simple and efficient because of
these designs.

When a producer meets a consumer, the consumer reports
its interests in a BF (not TCBF) to the producer. The producer
then queries all its messages against the filter, and forwards
all the messages that match the filter, to the consumer.

Similar processes are performed where a broker meets a
producer/consumer. When a broker meets a producer, it for-
wards a BF to the producer. The producer queries that filter and
determines the events that need to be transmitted. This saves
bandwidth. For the applications that we consider in this paper,
this saving is not negligible. When a broker meets a consumer,
the broker requests a BF containing the consumer’s interests,
then forwards the matched messages to the consumer. We
reduce the communication overhead by ripping the counters
from the TCBFs. This saving is not negligible in HUNETs.
For a single message, at most C copies are replicated to C

different brokers. The message is removed from the producer’s
memory after its copy number reaches the limit. The messages
directly forwarded to consumers are not counted as copies.
Messages’ lifetime is controlled by their Time-To-Live (TTL)
values, which are identical to their maximum tolerable delay.
The TTL is counted since the message has been created.

When two brokers meet, they first exchange their relay
filters. The two brokers, say B0 and B1, make message
forwarding decisions before merging their relay filters. One
of the two brokers B0 and B1, query the other’s preference to
itself against each message it carries. Those messages that have
the largest positive preference are forwarded first. Messages
are removed from brokers’ memory after being forwarded.
This is to prevent excessive copies in the network.

VI. ANALYSIS

The DF (Decaying Factor) is the key to adjusting B-SUB’s
behaviors. We consider the impact of the DF on interests prop-

agation and the FPR. We also analyze the storage complexity
of TCBFs and present a TCBF allocation method with optimal
FPR.

A. DF and interests propagation

If decaying is not used, that is, the counters of the set
bits do not change after being set, then no interests will be
removed. An obvious consequence is that a broker will end
up with carrying the interests from the users that it meets
infrequently. Bad forwarders may be selected as forwarders.
Another consequence is that the FPR increases. This results
in unnecessary traffic in the network, wasting devices’ energy
and bandwidth.

Another reason to use decaying is to enforce the messages
timeliness. As stated before, we consider social networking
applications in HUNETs. It is, therefore, reasonable to assume
that a message is of no value if its delay is too long, since
users can get the message through other connections. Suppose
that each message has a delay limit of T, we should set the
DF in such a way that an interest will get removed after T

since a consumer inserted the interest once. So, if a broker
contains an interest, then that means that the broker has met
a consumer that is interested in it, withing T. If a message is
forwarded by the broker, it is likely that the message will be
delivered withing T.

If the initial value of the counters is I, according to the
above analysis, the DF can be I

T
. However, it is still possible

that a key is not removed after T because its counters are
accidentally incremented by some other keys. The counters
can be incremented in two ways: A-merge with filters from
message producers or M-Merge with filters from brokers. We
only consider the first case due to the intractable complexity
of the second one. We assume that each node has its own
interests, the number of keys collected in T is obtained by
accumulating all keys from the contacted nodes, denoted as
N. For one of the k bits associated with a key and another
key, the probability of the bit being accidentally incremented
by the other key is k

m , that is, the other key has k chances
to be hashed to that bit location (we omit the probability that
multiple hash functions return the same location). Overall, kN

m
keys are hashed to the same bit.

The number of keys hashed to the location, num, is a
binomial distribution with expectation kN

m . Because a key is
removed once and any one of its counters reaches 0, the
key’s lifetime is determined by the the minimum value of
{num0, ..., numk−1}. Denote F (x; N, k

m ) the CDF of num,
we get the expectation of MIN{num0, ..., numk−1}:

M̂IN{num0, ..., numn−1} =
N∏

x=1

{1 − F (x − 1; N,
k

m
)k − (1 − F (x; N,

k

m
)k} (4)

Multiply the value in Eq. 4 with the counters’ initial value
I, we get the expectation of the minimum incremental value
of the key’s counters: I

(
1 + M̂IN{num0, ..., numn−1}

)
.

Based on this result, the DF is set to Eq. 5, where a small
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constant � is added to account for the values in the second
case.

DF =
I

T
+

M̂IN{num0, ..., numn−1}I
T

+ � (5)

B. DF-FPR trade-offs

According to Eq. 5, T decreases when the DF increases,
which, in turn reduces N and FPR. However, the scope that
interests can propagate is also reduced. It is, therefore, possible
that interests are unable to reach the corresponding producers,
which result in a lower delivery ratio. The point here is that
we are able to control the FPR by adjusting the DF.

In practice, we can not get a close-form function of the
DF and T. However, we can tentatively adjust the DF, then
re-adjust its value by observing the resultant FPR; until a
desirable FPR is achieved.

If we know T, since we have set the decaying factor so
that the interests can get removed after T, the number of the
elements in the filter is determined by the number of keys,
N, that a broker collected within T. Some interests may be
duplicated. Suppose each producer has k̄ keys, and there are
K keys in total. The number of unique interests stored in a
broker’s filter is given by the following equation:

N̂ = N

(
1 − 1

K

)N−k̄

(6)

Then, we can calculate the FPR using Eq. 1. Alternatively,
we can derive the number of elements using Eq. 2, Eq. 3, and
the observed FR: N̂ = m

k ln 1
1−FR . Combining Eq. 6 and Eq. 1,

we obtain that the FPR is (1 − e
−kN̂

m )N̂, where N̂ is given by
Eq. 6, and m is the length of the bit-vector.

Although these messages do waste bandwidth, not all of
them get delivered to the consumers, because the matching is
conducted at the final stage of the forwarding. The actual prob-
ability that a message, in which no consumers are interested,
getting delivered to a consumer is FPR2. These messages
are considered completely wasted. On the other hand, even
falsely injected messages can be delivered to users that are
really interested in them, which is not considered completely
wasted. Their ratio is FPR × (1 − FPR).

C. Memory consumption

A TCBF has a bit-vector and a number of counters. For
a bit-vector of length m, instead of using a raw bit-vector
that has m bits, we merely need to record the locations of
the set bits. Each location needs �log2m� bits. The overall
size is α × �log2m�. This method is better only when α ×
�log2m� < m, that is, α < m

�log2m� . α is given in Eq. 2. We
use a 1-byte counter. Usually, 24 hours will be enough for
delay. The best granularity is 5.6 minutes in this case. The
memory consumption of the counters is therefore α bytes.
Thus, the expected total size of a filter, in this case, is: α ×
(1 + �log2m�).

The condition, α× �log2m� < m, in the above equation is
usually met because the FR is low. A few optimizations are
possible. If all the counters of a filter are identical, we merely

save one value, which cuts the size to α + �log2m� bytes.
When a broker requests messages from a source, it does not
need to report the counters, which cuts the size to α bytes. If
we use raw strings, instead of TCBFs, to represent interests
and the memory consumption is obtained by summing up the
memory space of all the interests, and the associated control
information. Later, in Section VII, we discuss, in detail, the
keys used in the simulation, and the comparison of the memory
consumptions of two approaches.

D. TCBF allocation for optimal FPR

We consider a dynamic TCBF allocation strategy, where a
new TCBF is allocated when the fill ratio (FR) of the current
filter(s) exceeds a threshold τ .

As discussed in Section VI-B, we can derive the number of
unique keys in a TCBF using Eq. 2 and Eq. 3. Then, we can
get the FPR of the TCBF using Eq. 1.Before we step into the
allocation strategy, let’s consider the FPR of a collection of h
BFs {F0, ..., Fh−1} to represent a single set of n elements.
For a query against a key for h filters, the joint FPR is
the complementary probability that all h filters return correct
responses, which equals

(
1 − ∏h−1

i=0 (1 − FPRi)
)

. FPRi is
determined by Eq. 1, thus FPRjoint is given by the following
equation:

FPRjoint = 1 −
h−1∏
i=0

(
1 − (1 − e

−nik

m )k
)

(7)

where:
h−1∑
i=0

ni = n

Each one’s memory consumption in the h filters is α×(1+
�log2m�). The total memory of h TCBFs is given by:

S =
h−1∑
i=0

{[
1 −

(
1 − 1

m

)kni
]

m(1 + �log2m�)
}

= m(1 + �log2m�)
h−1∑
i=0

(
1 − e−

kni
m

)
(8)

Eq. 8 is obtained because m is quite large. Now, we return
to the problem of how to choose the optimal parameters. Given
an upper bound of storage Smax, we are to determine what
are the parameters for the minimum FPR:

Minimize: FPRjoint

Satisfy: S < Smax (9)

It is clear that FPRjoint achieves the maximum value when
ni = n

h for all i ∈ {0, ..., h−1}. We rewrite Eq. 9 as follows:

Maximize:
(
1 − (1 − e−

nk
hm )k

)h

Satisfy: h
(
1 − e−

nk
hm

)
<

Smax

m(1 + �log2m�) (10)

Eq. 10 is too complicated to solve efficiently. We reduce its
complexity by fixing k and m. Here, n is a constant that can
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(a) Delivery ratio (b) Delay (c) Number of forwardings

Fig. 7. The delivery ratio, delay, and number of forwardings per delivered message of PUSH, B-SUB, and PULL in Haggle(Infocom06) trace.

be measured in simulations. The problem now is to find the
optimal h. Because FPRjoint and S are monotone increasing
functions of h, and S has a upper bound, the minimum
FPRjoint is achieved when h reaches its maximum value.
Since h is an integer, its maximum value can be found by
a binary search. The maximum number of keys in a signle
TCBF is then obtained; and the corresponding FR calculated
using Eq. 3 is set as the threshold τ .

VII. SIMULATION EVALUATION

A. Simulation settings

We consider three metrics in our simulation: delivery ratio,
delay, and overhead. We compared B-SUB with two other
techniques: PUSH, PULL. In the PUSH, a node replicates an
event it stores to every node it encounters that has not received
a copy. In the PULL, a node only collects messages that it is
interested in from its directly encountered neighbors.

We use two real-world human contact traces in simulations:
MIT reality [13] and Haggle (Infocom06) [26]. These two
datasets are obtained by logging the bluetooth contact between
portable devices. The characteristics of these two data sets are
given in Table I. These two data sets have a moderate number
of nodes, which are the environments we designed for. We
use the entire Haggle trace obtained from the Infocom ’06
conference, and the 3 day records from the MIT Reality trace,
in the simulation.

Since the nodes in HUNETs are used by people, all nodes
should have their own interests and generate messages. We
assume that each node is interested in only one key. Each node
has a fixed message generation rate R. This rate is constant
for each node, which is determined by its social standing. We
use centrality to measure the social standing. The higher the
centrality, the higher the message generation rate. Denote the
minimum message rate R̂ for the smallest centrality Ĉ and the

Data Set Haggle(Infocom’06) MIT reality

Device iMote phone
Communication method Bluetooth Bluetooth

Duration (days) 3 246
Number of nodes 79 97

Number of contacts 67,360 54,667

TABLE I
PARAMETERS OF TWO DATA SETS

NewMoon Twitter’sNew funnybutnotcool openwebawards

0.132 0.103 0.0887 0.0739

TABLE II
THE DISTRIBUTION OF THE TOP 4 KEYS IN THE SIMULATION (SPACES ARE

REMOVED).

message generation rate R for a node with a centrality C is
R = CR̂

Ĉ
. R̂ is set to 1

30message/minute. I is set to 50.
We prepared 38 keys from the Twitter Trend search en-

gine [18] in one week (from 16th to 22nd Nov. 2009). The
probability of each key being selected as an interest for each
node is determined by the key’s weight in the original Twitter
Trend, which is obtained by querying the Twitter API [18].
Messages have a maximum size of 140 bytes, which is the
same as the Twitter posts. We assume that messages’ length
is uniformly distributed in [1, 140]. We list in Table II the
probability of the top 4 keys in the simulation. The average
length of the keys is 11.5 bytes. We use a bit-vector of 256
bits and 4 hash functions, thus, at most, 5 bytes are used
to encode a single key. If the additional control information
needed in using raw strings is considered, the space complexity
of using TCBFs is quite desirable. The worst case FPR of the
filter storing 38 keys, in theory, in this setting, is 0.04. The
bandwidth of the wireless channel is 1Mbps, which is the peak
value of Bluetooth devices. Wireless transmission errors are
not considered. It is well-known that a wireless channel offers
far less bandwidth than its claimed peak value. We assume that
the average transmission rate is 250Kbps. The durations of all
the contacts are already recorded in the trace. The maximum
number of copies that can be forwarded by producers C is 3.
The broker allocation threshold is 3 and 5, which maintains
about 30% of the nodes being brokers in two traces. The time
window is 5 hours.

B. Delivery ratio

We provide the results of the delivery ratio under different
Time-To-Live (TTL) values. In order to compare with PUSH
and PULL in the same setting, we set T the same as the TTL,
and calculate DFs using Eq. 5. A small constant is added to
the resultant DFs to account for the missed cases in Eq. 5.

Fig. 7(a) and Fig. 8(a) present the delivery ratio of three
techniques in two traces. PUSH essentially floods messages
in the network, so its delivery ratio indicates the best results
we can achieve. B-SUB is only slightly lower than PUSH.
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(a) Delivery ratio (b) Delay (c) Number of forwardings

Fig. 8. The delivery ratio, delay, and number of forwardings per delivered message of PUSH, B-SUB, and PULL in MIT Reality trace.

The DF of B-SUB is calculated using Eq. 5. The number of
encountered nodes in T is obtained by analyzing the traces.
However, it is straightforward to set an appropriate DF online
by counting the number of nodes a broker meets in the time
window. On the contrary, PULL is the most conservative.
It only performs one-hop forwarding. Due to the limited
diameters in the network, the delivery ratio of PULL is not
far from PUSH and B-SUB. The results in MIT Reality trace
have the similar trend. Overall, the MIT Reality trace forms
a sparser network, and its contact frequencies are lower than
that in Haggle trace. So, the delivery ratio in the MIT Reality
trace is lower.

We present the changing of the delivery ratio with the DF in
Fig. 9(a). The TTL is set to 20 hours. The DF for T = 10hours
is set to 0.138/min, or decremented by 1 every 7.2 minutes,
which is obtained by counting the number of different nodes
met in 10 hours. When the DF is 0, it means that we do not
reduce counters’ values. Thus, the messages just get flooded
into the network. The delivery ratio is only limited by the
messages’ TTL values. Higher DF values reduce the scope of
the interests propagation, which in turn reduces the delivery
ratio. Fig. 9(a) echoes with the results in Fig. 7 when DF =
0.138, which is the DF for TTL = 10 hours. Note that the
DF does not limit the messages’ life time, only limits the
scope of interests propagation. The DF is effective in reducing
unnecessary transmission, which will be discussed later.

C. Delay

We only consider the delay of delivered messages, which is
measured as the time interval from the time when the messages
are generated to the time they are delivered. The results are
given in Fig. 7(b) and Fig. 8(b). Again, PUSH shows the best
performance. B-SUB has similar results. The delay of PULL
is considerably larger than B-SUB and PUSH. Since we use a
log10 scaled time-axis, the changing of delay with the TTL is
actually quite slow. This is because most of the messages can
be delivered within a relatively short time. Thus, the messages
being delivered because of increased TTLs, which have much
larger delays, do not increase delay siganificantly.

The changing of delay with the DF in two traces is given
in Fig. 9(b). Because the DF limits the scope of interests
propagation, the delay also decreases with the DF. And due to
the two traces’ properties, the results in the Haggle (Infocom
06) are a little better than the results in the MIT Reality trace.

Again, when DF = 0, the delay is only limited by the TTL,
which is set to 20 hours.

D. Overhead

We first look at the number of forwardings for each deliv-
ered message. The results are obtained by dividing the number
of forwardings in the network by the number of messages that
have been delivered. The results are presented in Fig. 7(c) and
Fig. 8(c). PUSH has the most forwarding numbers. B-SUB is
able to maintain a relatively stable forwarding counts since
it uses decaying to limit the scope of interests propagation,
and the TCBF’s preferential query to limit the forwarding
counts. PULL actually has the best performance because it
is the most conservative protocol. However, PULL’s delivery
ratio and delay are much worse than B-SUB.

The changing curve of the number of forwardings with
the DF is given in Fig. 9(c). The TTL of messages is 20
hours. Because we are able to reduce the scope of interests
propagation by using a higher DF, the number of forwardings
decrease with the DF. This is because: 1) the scope of message
forwarding to interested users is reduced, which means that
“distant” producers tend to not forward packets; 2) the brokers
are more aggressive in selecting users in forwarding, since
only users that frequently meet will get opportunities to
propagate their interests to other nodes in the network. When
the DF is too large, the delivery ratio is quite low. In this
situation, B-SUB works like PULL, where only very close
producers get the chance to forward their messages. Thus, the
average number of forwardings reduces to nearly 1.

We then look at the FPR of the delivered messages. The
ratio of the number of falsely delivered messages to the total
number of delivered messages is computed as the FPR. We
present the results in Fig. 9(d). As analyzed before, the worst
case FPR, in theory, is 0.04 in our settings. In practice, the
FPR can be much lower than this value. This is because the
elements stored in each TCBF are usually quite less than the
maximum number of keys. The FPR reaches the largest value
for the DF = 0, where brokers are highly likely to collect
the maximum number of elements. Additionally, due to the
uneven distribution of the keys, the FPR can actually be larger
than the maximum theoretical value. When the DF increases,
the elements stored in brokers’ TCBFs decreases, along with
the FPR. The results of B-SUB’s false positives show that it
is practical to achieve adequate performance using much less
storage with the TCBF.
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Fig. 9. The changing curve of the four metrics with the decaying factor.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed B-SUB, a content-based pub-sub
system for HUNETs. B-SUB uses a novel data structure called,
Temporal Counting Bloom Filter, to perform content-based
networking tasks. Using the TCBF reduces memory and band-
width consumption in storing and propagating users’ interests,
which makes B-SUB simple and efficient. We systematically
analyze the impact of several parameters of B-SUB on its
behaviours and performance. Extensive real-world-trace-based
simulations are conducted to verify B-SUB’s performance. The
results have proven that B-SUB has a similar delivery ratio,
and delay, to the optimal method (PUSH), whereas B-SUB
consumes much less resources than PUSH.

However, more simulation studies are needed to fully justify
B-SUB’s design. With the development of wireless commu-
nication technologies, HUNETs are becoming a promising
communication platform for the future wireless applications.
A prototype HUNET system will be our future work.
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